Energy and Morse index of solutions of Yamabe type problems by Ben Ayed M., El Mehdi K., Pacella F.

By Ben Ayed M., El Mehdi K., Pacella F.

Show description

By Ben Ayed M., El Mehdi K., Pacella F.

Show description

Read Online or Download Energy and Morse index of solutions of Yamabe type problems on thin annuli PDF

Best symmetry and group books

Von Zahlen und Größen: dritthalbtausend Jahre Theorie und Praxis 2

Dieses zweib? ndige Werk handelt von Mathematik und ihrer Geschichte. Die sorgf? ltige examine dessen, used to be die Alten bewiesen - meist sehr viel mehr, als sie ahnten -, f? hrt zu einem besseren Verst? ndnis der Geschichte und zu einer guten Motivation und einem ebenfalls besseren Verst? ndnis heutiger Mathematik.

Großgruppenverfahren: Lebendig lernen - Veränderung gestalten (German Edition)

Organisationen und ihre Mitarbeiter m? ssen fortlaufend lernen und sich ver? ndern, um konkurrenzf? hig zu bleiben. Eine effektive M? glichkeit, Ver? nderungsprozesse in Unternehmen zu steuern, stellen Gro? gruppenverfahren dar, denn sie binden auf strukturierte und transparente Weise viele Menschen in einen gemeinsamen Prozess ein.

Extra resources for Energy and Morse index of solutions of Yamabe type problems on thin annuli

Example text

C. A head cannot take another head as a complement (Kayne (199[4]): 8). d. A head cannot have more than one complement (Kayne (199[4]): 136, fn. 28). Along with these standard properties of X-bar theories, the following special properties can also be derived from the LCA (via the de®nition of c-command based on the segment/category distinction): (21) a. A speci®er is an adjunct (Kayne (199[4]): 17). b. There can at most be one adjunct/speci®er per phrase (Kayne (199[4]): 22). c. At most one head can adjoin to another head (Kayne (199[4]): 20¨ ).

Let us start with the small clause type, (1a). This structure includes two nonterminals (YP and ZP) that c-command each other and that contain at least another nonterminal (Y 0 and its complement QP, Z 0 and its complement RP); the nonterminals projecting YP and ZP, then, would prevent the tree from linearizing. For the sake of clarity, I represent the situation in greater detail in (11) by indicating the terminals dominated by the head of YP (y) and by the head of ZP (z). , z precedes y). , y precedes z).

The situation parallels the one in (14); that is, (F, L) is a point of symmetry. 8 Limiting ourselves to looking at the LCA-compatible structures, we can see that most stipulated properties of X-bar theoriesÐin particular, the ones listed in (20)Ðcan be derived from the LCA. In what follows I will rely heavily on the schema given in Cinque 1996, 449¨. (from which (20) and (21) are quoted). (20) a. There can be no phrase dominating two (or more) phrases (Kayne (199[4]): 11). b. There cannot be more than one head per phrase (Kayne (199[4]): 8).

Download PDF sample

Rated 4.14 of 5 – based on 40 votes