By Eisenhart L.P., Veblen O.
Read or Download The Riemann Geometry and Its Generalization PDF
Similar geometry and topology books
The geometry of genuine submanifolds in complicated manifolds and the research in their mappings belong to the main complex streams of latest arithmetic. during this quarter converge the thoughts of varied and complicated mathematical fields equivalent to P. D. E. 's, boundary worth difficulties, caused equations, analytic discs in symplectic areas, advanced dynamics.
Designing fair curves and surfaces: shape quality in geometric modeling and computer-aided design
This cutting-edge research of the options used for designing curves and surfaces for computer-aided layout purposes specializes in the primary that reasonable shapes are constantly freed from unessential good points and are basic in layout. The authors outline equity mathematically, reveal how newly built curve and floor schemes warrantly equity, and help the consumer in deciding upon and elimination form aberrations in a floor version with no destroying the primary form features of the version.
- Categorical Topology
- Grassmannians and Gauss Maps in Piecewise-Linear and Piecewise-Differential Topology
- A Geometrical Determination of the Canonical Quadric of Wilczynski
- Normal coordinates in the geometry of paths
- Geometria V.2
Extra resources for The Riemann Geometry and Its Generalization
Sample text
35. Fabricius-Bjerre8 ) F¨ ur jede generische und geschlossene ebene Kurve gilt die Gleichung 1 N + = N − + D + W. 2 Dabei bedeutet generisch“, daß die Kurve nur einfache Doppelpunkte und Doppeltan” genten hat (keine dreifachen oder h¨oheren), daß in solchen Doppelpunkten die beiden Tangenten linear unabh¨angig sind und daß in allen Punkten mit κ = 0 jedenfalls κ′ = 0 gilt und daß keine Doppeltangente die Kurve in einem Wendepunkt ber¨ uhrt. ¨ Ubungsaufgaben 1. Die Kr¨ ummung und die Torsion einer Frenet–Kurve c(t) im IR3 sind in beliebiger Parametrisierung gegeben durch die Formeln κ(t) = Det(c, ˙ c¨,˙¨ c) ||c˙ × c¨|| und τ (t) = .
Dann gilt f¨ ur die sph¨ arische Kurve c′ ||(c′ )′ ||ds = κds, also stimmt l¨angs der gegebenen Kurve c das Bogenelement von c′ dort, wo c′ regul¨ ar ist, mit κds u angenparameter der ¨berein. a. nicht mehr der Bogenl¨ ummung Kurve c′ ist und daß c′ auch nicht u ¨berall regul¨ar sein muß. Die totale Absolutkr¨ l ′ κ(s)ds ist also nichts anderes als die Gesamtl¨ a nge von c als sph¨ a rische Kurve. Dabei 0 sind mehrfach durchlaufene Teile von c′ auch mehrfach zu z¨ ahlen. 32 f¨ ur ebene Kurven gen¨ ugt es im folgenden zu zeigen: Die L¨ange L der sph¨arischen Kurve c′ ist strikt gr¨oßer als 2π, wenn c eine geschlossene, aber nicht-ebene Kurve ist.
Das 3 euklidische Skalarprodukt X, Y = i=1 xi yi hat ja unter anderem zur Folge, daß die L¨ange ||c|| ˙ der Tangente an eine regul¨are Kurve c(t) niemals verschwinden kann. Es gibt aber nun gute Gr¨ unde, auch andere, nicht positiv definite, Skalarprodukte zu betrachten. In der speziellen Relativit¨atstheorie legt man eine Raumzeit von 3 + 1 Dimensionen zugrunde, wobei die Zeit als eine Dimension aufgefaßt wird. In der Richtung dieser Zeit-Koordinate wird dann das Skalarprodukt mit einem negativen Vorzeichen versehen.